1	(i)	$f'(x) = \frac{x \cdot 2(x-2) - (x-2)^2}{x^2}$	M1	quotient (or product) rule, condone sign errors only	e.g. $\frac{\pm x.2(x-2)\pm(x-2)^2}{x^2}$
			A1	correct exp, condone missing brackets here	PR: $(x-2)^2 \cdot (-x^{-2}) + (1/x) \cdot 2(x-2)$
		$= \frac{2x^2 - 4x - x^2 + 4x - 4}{x^2}$			
		$=(x^2-4)/x^2=1-4/x^2*$	A1	simplified correctly NB AG	with correct use of brackets
		$or f(x) = (x^2 - 4x + 4)/x$			
		= x - 4 + 4/x	M1	expanding bracket and dividing each term by x	must be 3 terms: $(x^2 - 4)/x$ is M0
			A1	correctly	e.g. $x - 4 + 2/x$ is M1A0
		$\Rightarrow f^*(x) = 1 - 4/x^2 *$	A1	not from wrong working NB AG	
		$f''(x) = 8/x^3$	B1	o.e. e.g. $8 x^{-3}$ or $8x/x^4$	
		$f'(x) = 0$ when $x^2 = 4$, $x = \pm 2$	M1	$x = \pm 2$ found from $1 - 4/x^2 = 0$	allow for $x = -2$ unsupported
		so at Q, $x = -2$, $y = -8$.	A1	(-2, -8)	
		f''(-2) = -1 < 0 so maximum	B1dep [7]	dep first B1. Can omit -1, but if shown must be correct. Must state < 0 or negative.	must use 2 nd derivative test

Question		on	Answer	Marks	Guidance	
1	(ii)		$f(1) = (-1)^2 / 1 = 1$			or $(x-2)^2 = x \Rightarrow x^2 - 5x + 4 = 0$
			$f(4) = (2)^2/4 = 1$	B1	verifying $f(1) = 1$ and $f(4) = 1$	\Rightarrow $(x-1)(x-4) = 0, x = 1, 4$
			$\int_{1}^{4} \frac{(x-2)^{2}}{x} dx = \int_{1}^{4} (x-4+4/x) dx$	M1	expanding bracket and dividing each term by x 3 terms: $x - 4/x$ is M0	if $u = x - 2$ $\int \frac{u^2}{u+2} du = \int (u - 2 + \frac{4}{u+2}) du$
			$= \left[x^2 / 2 - 4x + 4 \ln x \right]_1^4$	A1	$x^2/2 - 4x + 4 \ln x$	$u^2/2 - 2u + 4 \ln (u + 2)$
			$= (8 - 16 + 4\ln 4) - (\frac{1}{2} - 4 + 4\ln 1)$			
			$=4\ln 4-4\frac{1}{2}$	A1cao		
			Area enclosed = rectangle - curve	M1	soi	
			$= 3 \times 1 - (4\ln 4 - 4\frac{1}{2}) = 7\frac{1}{2} - 4\ln 4$	Alcao	o.e. but must combine numerical terms and evaluate ln 1 – mark final ans	
			or			
			Area = $\int_{1}^{4} [1 - \frac{(x-2)^{2}}{x}] dx$	M1	no need to have limits	
			$= \int_{1}^{4} (5 - x - 4 / x) dx$	M1	expanding bracket and dividing each term by x	must be 3 terms in $(x-2)^2$
				A1	$\int_{0}^{\infty} \frac{5-x-4/x}{2}$	expansion
			$= \left[5x - x^2 / 2 - 4 \ln x \right]_1^4$	A1	$5x - x^2/2 - 4 \ln x$	
			$=20-8-4\ln 4-(5-\frac{1}{2}-4\ln 1)$	A1cao	o.e. but must combine numerical terms and	
			$=7\frac{1}{2}-4\ln 4$	[6]	evaluate ln 1 – mark final ans	
	(iii)		[g(x) =] f(x+1) - 1	M1	soi [may not be stated]	
			$= \frac{(x+1-2)^2}{x+1} - 1$	A1		
			$= \frac{x^2 - 2x + 1 - x - 1}{x + 1} = \frac{x^2 - 3x}{x + 1} *$	A1	correctly simplified – not from wrong working NB AG	
				[3]		

	Question		Answer	Marks	Guidance	
1	(iv) Area is the same as that found in part (ii)		M1	award M1 for ± ans to 8(ii) (unless zero)		
			4ln4 - 7½	A1cao [2]	need not justify the change of sign	

2	(i)	$xe^{-2x} = mx$	M1	may be implied from 2 nd line	
		\Rightarrow $e^{-2x} = m$	M1	dividing by x , or subtracting $\ln x$	o.e. e.g. $[\ln x] - 2x = \ln m + [\ln x]$
		\Rightarrow $-2x = \ln m$			or factorising: $x(e^{-2x} - m) = 0$
		$\Rightarrow x = -\frac{1}{2} \ln m *$	A1	NB AG	
		or			
		If $x = -\frac{1}{2} \ln m$, $y = -\frac{1}{2} \ln m \times e^{\ln m}$	M1	substituting correctly	
		$=-\frac{1}{2}\ln m\times m$	A1		
		so P lies on $y = mx$	A1		
			[3]		
	(ii)	let $u = x$, $u' = 1$, $v = e^{-2x}$, $v' = -2e^{-2x}$	M1*	product rule consistent with their derivs	
		$dy/dx = e^{-2x} - 2xe^{-2x}$	A1	o.e. correct expression	
		$= e^{-2(-\frac{1}{2}\ln m)} - 2 \cdot (-\frac{1}{2}\ln m)e^{-2(-\frac{1}{2}\ln m)}$	M1dep	subst $x = -\frac{1}{2} \ln m$ into their deriv dep M1*	
		$= e^{\ln m} + e^{\ln m} \ln m [= m + m \ln m]$	Alcao	condone e ^{lnm} not simplified	but not $-2(-\frac{1}{2} \ln m)$, but mark final ans
			[4]		

Question		on	Answer	Marks	Guidance		
2	(iii)		$m + m \ln m = -m$	M1	their gradient from (ii) = $-m$		
			\Rightarrow $\ln m = -2$				
			$\Rightarrow m = e^{-2} *$	A1	NB AG		
			or $y + \frac{1}{2}m\ln m = m(1 + \ln m)(x + \frac{1}{2}\ln m) x = -\ln m,$ $y = 0 \Rightarrow \frac{1}{2}m\ln m = m(1 + \ln m)(-\frac{1}{2}\ln m)$ $\Rightarrow 1 + \ln m = -1, \ln m = -2, m = e^{-2}$	B2	for fully correct methods finding <i>x</i> -intercept of equation of tangent and equating to $-\ln m$		
			At P, $x = 1$	B1			
			\Rightarrow $y = e^{-2}$	B1	isw approximations	not $e^{-2} \times 1$	
				[4]			
	(iv)		Area under curve = $\int_0^1 x e^{-2x} dx$				
			$u = x$, $u' = 1$, $v' = e^{-2x}$, $v = -\frac{1}{2} e^{-2x}$	M1	parts, condone $v = k e^{-2x}$, provided it is used consistently in their parts formula	ignore limits until 3 rd A1	
			$= \left[-\frac{1}{2} x e^{-2x} \right]_0^1 + \int_0^1 \frac{1}{2} e^{-2x} dx$	A1ft	ft their v		
			$= \left[-\frac{1}{2} x e^{-2x} - \frac{1}{4} e^{-2x} \right]_0^1$	A1	$-\frac{1}{2}xe^{-2x} - \frac{1}{4}e^{-2x} \text{ o.e}$		
			$= (-\frac{1}{2} e^{-2} - \frac{1}{4} e^{-2}) - (0 - \frac{1}{4} e^{0})$ $[= \frac{1}{4} - \frac{3}{4} e^{-2}]$	A1	correct expression	need not be simplified	
			Area of triangle = $\frac{1}{2}$ base × height	M1	ft their 1, e^{-2} or $[e^{-2}x^2/2]$	o.e. using isosceles triangle	
			$= \frac{1}{2} \times 1 \times e^{-2}$	A1		M1 may be implied from 0.067	
			So area enclosed = $\frac{1}{4} - 5e^{-2}/4$	A1cao [7]	o.e. must be exact, two terms only	isw	

				Ţ
3(i)	$\int_{0}^{1} \frac{x^{3}}{1+x} dx let u = 1+x, \ du = dx$			
	when $x = 0$, $u = 1$, when $x = 1$, $u = 2$	B1	a = 1, b = 2	seen anywhere, e.g. in new limits
	$=\int_{1}^{2}\frac{(u-1)^{3}}{u}du$	B1	$(u-1)^3/u$	
	$=\int_{1}\frac{1}{u}du$	M1	expanding (correctly)	
	$= \int_{1}^{2} \frac{(u^{3} - 3u^{2} + 3u - 1)}{u} du$	IVII	expanding (confectly)	
	и	A1dep	dep du = dx (o.e.) AG	e.g. $du/dx = 1$, condone missing dx's and du's, allow $du = 1$
	$= \int_{1}^{2} (u^{2} - 3u + 3 - \frac{1}{u}) du^{*}$	_	•	
	$\int_0^1 \frac{x^3}{1+x} dx = \left[\frac{1}{3} u^3 - \frac{3}{2} u^2 + 3u - \ln u \right]_0^2$	B1	$\left[\frac{1}{3}u^3 - \frac{3}{2}u^2 + 3u - \ln u \right]$	
		M1	substituting correct limits dep	upper – lower; may be implied from 0.140
	$= (\frac{8}{3} - 6 + 6 - \ln 2) - (\frac{1}{3} - \frac{3}{2} + 3 - \ln 1)$	A 1	integrated	
	$=\frac{5}{-}-\ln 2$	A1cao [7]	must be exact – must be 5/6	must have evaluated $\ln 1 = 0$
(ii)	$= \frac{5}{6} - \ln 2$ $y = x^2 \ln(1+x)$		Donate de male	
` '		M1 B1	Product rule $d/dx (ln(1+x)) = 1/(1+x)$	or d/dx (ln u) = $1/u$ where $u = 1 + x$
\Rightarrow	$\frac{dy}{dx} = x^2 \cdot \frac{1}{1+x} + 2x \cdot \ln(1+x)$	A1	cao (oe) mark final ans	$\ln 1 + x \text{ is } A0$
		111		
	$=\frac{x^2}{1+x}+2x\ln(1+x)$			
	When $x = 0$, $dy/dx = 0 + 0.\ln 1 = 0$	M1	substituting $x = 0$ into correct deriv	when $x = 0$, $dy/dx = 0$ with no evidence of substituting M1A0
(⇒	Origin is a stationary point)	A1cao	www	but condone missing bracket in $ln(1+x)$
(***)	c1 .	[5]		
(iii)	$A = \int_0^1 x^2 \ln(1+x) \mathrm{d} x$	B1	Correct integral and limits	condone no dx, limits (and integral) can be implied by subsequent work
	let $u = \ln(1+x)$, $dv/dx = x^2$			
	\ //			
	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{1+x}, \ v = \frac{1}{3}x^3$	M1	parts correct	u, du/dx , dv/dx and v all correct (oe)
\Rightarrow	$A = \left[\frac{1}{3} x^3 \ln(1+x) \right]_0^1 - \int_0^1 \frac{1}{3} \frac{x^3}{1+x} dx$	A1		condone missing brackets
	2 30		1	
	$= \frac{1}{3} \ln 2 - (\frac{5}{18} - \frac{1}{3} \ln 2)$	B1	$=\frac{1}{3}\ln 2 - \dots$	
	$= \frac{1}{3} \ln 2 - \frac{5}{18} + \frac{1}{3} \ln 2$	B1ft	$\dots - 1/3$ (result from part (i))	condone missing bracket, can re-work from scratch
	$=\frac{2}{3}\ln 2 - \frac{5}{18}$	A1	cao	oe e.g. $=$ $\frac{12 \ln 2 - 5}{18}$, $\frac{1}{3} \ln 4 - \frac{5}{18}$, etc but must have evaluated $\ln 1 = 0$
		[6]		Must combine the two ln terms
		[6]		Trust combine the two in terms